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Abstract: Computer simulation is a compu-
tational approach whereby global system properties
are produced as dynamics by direct computation of in-
teractions among representations of local system el-
ements. A mathematical theory of simulation con-
sists of an account of the formal properties of se-
quential evaluation and composition of interdependent
local mappings. When certain local mappings and
their interdependencies can be related to particular
real world objects and interdependencies, it is common
to compute the interactions to derive a symbolic model
of the global system made up of the corresponding in-
terdependent objects. The formal mathematical and
computational account of the simulation provides a
particular kind of theoretical explanation of the global
system properties and, therefore, insight into how to
engineer a complex system to exhibit those properties.

This paper considers the mathematical founda-
tions and engineering principles necessary for build-
ing large scale simulations of socio-technical systems.
Ezxamples of such systems are urban regional trans-
portation systems, the national electrical power mar-
kets and grids, the world-wide Internet, vaccine de-
sign and deployment, theater war, etc. These sys-
tems are composed of large numbers of interacting
human, physical and technological components. Some
components adapt and learn, exhibit perception, inter-
pretation, reasoning, deception, cooperation and non-
cooperation, and have economic motives as well as
the usual physical properties of interaction. The sys-
tems themselves are large and the behavior of socio-
technical systems is tremendously complez.

The state of affairs for these kinds of systems is
characterized by very little satisfactory formal theory,
a good deal of very specialized knowledge of subsys-
tems, and a dependence on experience-based practi-
tioners’ art. However, these systems are vital and re-
quire policy, control, design, implementation and in-
vestment. Thus there is motivation to improve the
ability to comprehend them by use of whatever means,
including computer simulation. Moreover, the general
theoretical understanding of the system properties pro-
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vided by the formalization of simulation, is of great
value given the otherwise poor state of understanding
of the systems themselves.

Theoretically, Sequential Dynamical Systems
(SDS) are introduced as a mathematical model of dis-
crete simulation. Sequential dynamical systems are
compositions of local maps. The order of composition
reflects casual relationships between individual agents
abstracted as functions and the locality of the func-
tions reflects limited interaction and knowledge of the
entire system available to each agent. The properties
of SDS are very general and allow much deeper un-
derstanding of both the simulation and the simulated
system.

The last part considers the engineering principles
derived from such a theory. These engineering prin-
ciples allow us to specify, design, and analyze simula-
tions of extremely large systems and implement them
on massively parallel architectures. These ideas are
illustrated by several socio-technical simulations being
developed at Los Alamos National Laboratory.

1 Introduction and Motivation

This paper considers theoretical foundations and as-
sociated engineering science for simulating large scale
socio-technical systems. The name socio-technical
systems indicates the fact that such systems are de-
fined by essential physical, technological, and hu-
man/societal components. Examples of such sys-
tems include: transportation systems, financial sys-
tems, electrical power markets, communication sys-
tems, health care systems, supply chain management
systems and war fighting systems. As an example of
this general class, note that all critical national infras-
tructures are large scale socio-technical systems.
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These systems provide an excellent setting for the
study of simulation for at least two reasons. First,
because they are so distributed, diverse and display
such complexity, there is ample motivation for using
computer simulation to represent them. Second, for
the same reasons there is little theoretical understand-
ing of particular socio-technical systems themselves.
This, somewhat ironically perhaps, can serve to fo-
cus attention on the general properties of simulation
that might structure understanding of all of such sys-
tems rather than an immediate retreat to consider-
ation of a computational treatment of a particular
system-specific theory. Such restriction of focus of
computational methods is common, for example, in
the use of simulation in the purely physical sciences.
Indeed, a thesis of this paper is that many properties
of actual socio-technical systems are formally simu-
lated in the sense that these properties are dynami-
cal manifestations of composed, interacting local sub-
systems, e.g., virtual circuits in packet-switched net-
works, closing prices in markets, congestion in vehicu-
lar traffic, etc. Thus, not withstanding that computer
simulation is a valuable means with which to represent
socio-technical systems, the formalization of simula-
tion serves to provide generalities and principles over
these systems themselves which otherwise have little
theory associated with them.

The concept of a society of individuals — a funda-
mental aspect of socio-technical systems is largely a
matter of conventions for interactions and transac-
tions, i.e. traffic and information dissemination of one
sort or another. Thus, goods of various sort including
informational, financial and vehicular whose move-
ment gives rise to traffic and the design as well as
regulation of network resources on which this traffic
moves are important issues that need to be tackled
effectively. Traffic (of all sorts) and infrastructures
are also important to scientists, engineers and busi-
ness persons. They may seek to understand, design,
modify the actual in-place systems, develop relevant
technology, or market products and services.

Just as with socio-technical systems, computer sim-
ulation is also really a matter of (procedural) inter-
actions and (symbolic) transformations and transac-
tions, conventions and (data) traffic. As a result, it
seems intuitively plausible that computer simulations
can represent certain essentials of socio-technical sys-
tems and thus perhaps assist us to understand or de-
sign them. Examination of this intuition gives useful
insight regarding simulation as a formal means of sys-
tem representation. There is much new as of yet to
be discovered regarding both the prospects and lim-

itations of computer simulation. Some of our theo-
retical results already address whether/when simula-
tion is merely optional, whether it is, computationally
speaking, universal or a more restricted class of com-
putation, and many other important and pertinent
issues.

From the highest levels of government and the pri-
vate sector to system designers, operators and stu-
dents, computer simulations are used to combine
data, knowledge, and situational context and assist
human reasoning and decision-making in complex
socio-technical environments (e.g., critical infrastruc-
ture systems, military command and control, etc.)
The level of national interest in social infrastructure
in representation, analysis, and technical support for
policy-level decision making and situation manage-
ment is found in PDD39 (countering chem-bio ter-
rorism) and PDD63 (protection of critical/cyber in-
frastructure).

We will describe a formal conceptual organization
of these issues as they relate to simulations generally
and the use of simulations of socio-technical systems
for practical purposes.

2 Computer Simulations and
Discrete Dynamical Systems

Informally, computer simulation is the art and sci-
ence of using computers to calculate interactions and
transactions among many separate algorithmic rep-
resentations, each of which might be associated with
identifiable “things” in the real world (at least in a
world outside the simulation program). In most cases
it is fair to assume that the interactions between in-
dividual objects is local. Simulations compose these
“local mappings” and thereby generate “global phe-
nomena”.

Because of the widespread use of computer simu-
lations, it is difficult to give a formal definition of a
computer simulation that is applicable to all the var-
ious settings where it is used. Nevertheless, it is clear
that simulation has two essential aspects. First, a sim-
ulation is a dynamics generator. A computer simula-
tion program is a means by which to compose many
distinct, data local, iterated procedures. Each proce-
dure’s dynamics is affected by the composition of pro-
cedures and in that sense the composition produces
global dynamics. The second, aspect of simulation
is mimicry of the dynamics of another system by the
dynamics of the simulation program. After mimicry



is established, the simulation program is often called
a simulation model but this is a separate collection
of issues. We will discuss the first part in detail, but
also touch upon the second part in the subsequent
sections. Thus we view simulations as comprised of
the following: (i) a collection of entities with state
values and local rules for state transitions, (ii) an
interaction graph capturing the local dependency of
an entity on its neighboring entities and (iii) an up-
date sequence or schedule such that the causality in
the system is represented by the composition of local
mappings.

2.1 An Elementary Theory of Simula-
tion: SDS

An elementary theory of simulation should yield the-
orems that are applicable to a class of simulations
rather than to only particular members of this class.
In a series of papers [11, 12, 13, 15, 17, 20, 21, 22, 52,
74, 87, 89] we have begun to develop such an elemen-
tary theory. The theory is based on a discrete dynam-
ical systems viewpoint of simulation — indeed the goal
of simulations is to produce dynamical behavior via
composition of local interactions. Sequential Dynami-
cal Systems (SDS) are a new class of discrete finite dy-
namical systems. A formal definition of such a system
is given in Section 4. Informally, an SDS 8 is a 3-tuple
(Y,3,7). Here Y(V,E) is an undirected graph with
n nodes. Associated with each node is a state value
drawn from a finite domain. F = {f1, fa,..., fn} is
a set of functions such that the function f; is associ-
ated with node v;. Finally, 7 is a permutation of (or
a total order on) the nodes in V. A configuration
of an SDS is an n vector (c1,¢2,...,cy,), Where ¢; is
the value of the state of node v; (1 <1i < n). A single
SDS transition from one configuration to another is
obtained by updating the state of each node v; us-
ing the corresponding function f;. These updates are
carried out in the order specified by m. An SDS is
denoted by [Fy, ], if all the local functions f; are of
a particular kind say Nor, we will sometimes refer to
these SDS as [Nory,n] or Nor-SDS. In general if we
have a fixed function F at each node or if the local
transition functions are drawn from a set B then we
sometimes refer to such SDS as [Fy,n] (or F-SDS),
[By,n] (or B-SDS) respectively.

Ezxample 1: Consider the graph Y = Circy as shown
in figure 1. To each vertex ¢ in Y we associate a state
z; € {0,1} = F,. The parity function pary : F3 —
is defined by pars(z1, 22, z3) = 21 +z2+x3 mod 2. In
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Figure 1: The circle graph on 4 vertices, Circy.
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Thus the map Par; updates the state of vertex ¢ based
on the states of ¢ and its neighbors in Y and leaves all
other states fixed. We apply these maps to the state
z = (1,1,0,0) in the order m# = (1,2,3,4). At each
stage we use the value of the previous function as the
input to the next function, i.e.

(1,1,0,0) &' (0,1,0,0) "
(0,1,0,0) "3 (0,1,1,0) "5

(05 17 1’ 1)'

Thus we have ParyoParsoParyoPary(1,1,0,0) =
(0,1,1,1). The composition of maps
Pary o PargsoParsoPar; is a sequential dynami-
cal system (SDS). Specifically, it is the SDS over
the graph Circy induced by the parity function
par; : F§ — Fy with ordering 7 = (1,2,3,4). We
denote this by [Parciy,,n]. Clearly, a different
update order may give a different result.

By iterating the map ¢ =
the orbit of (1,1,0,0), i.e

[Parcirc, , 7] we obtain

(1,1,0,0) (0,1,1,1)

I

(0,0,0,1).

The phase space of the SDS ¢ is the union of all such
cycles and possible transients. It is easy to see that
SDS capture the three essential elements of any com-
puter simulation. The use of simple functions to rep-
resent each agent/entity is just an equivalent alternate
representation of each individual as automata. The
fact that each function depends locally on the state
values of neighboring agents is intended to capture



the intuition that individual objects comprising a real
system usually have local knowledge about the state
of system. Finally, a permutation is an abstraction of
the need to explicitly encode causal dependency. Ex-
tensions of this basic model will be discussed in the
subsequent sections. The informal description of an
SDS given above can be seen to capture all of the
above features.

2.2 Modeling and
Power of SDS

Computational

An immediate question that arises is the following:
How expressive is the SDS framework, and what is its
computational power? Clearly, we need models that
provide a delicate balance between modeling power
and the associated computational complexity. In this
context, the results presented here strongly support
the following assertions.

e Large-scale real world distributed systems can be
efficiently represented as SDS.

e Typical “state prediction” problems are compu-
tationally intractable even for very restricted in-
stances of SDS. Thus, it is unlikely that methods
more efficient than computer simulations can be
devised for the state prediction problem.

e SDS are “simple” yet computationally universal?.

Consider the first assertion. References [7, 24, 25, 32]
show how simulations of large-scale socio-technical
systems can be modeled using appropriate SDS. The
local interaction rules for entities and a dependency
graph structure are by now accepted as standard
aspects of discrete dynamical systems for modeling
large-scale systems. The ordering aspect is somewhat
new in a formal setting but has recently received at-
tention by other researchers [51, 39, 91]. It is implicit
in all discrete event simulations. Consider a simple
yet a realistic example of a simulation system that
uses this abstraction.

Ezxample 2: TRANSIMS is a large scale trans-
portation simulation project at the Los Alamos Na-
tional Laboratory. In this project, an SDS-based ap-
proach was used to micro-simulate every vehicle in an
urban transportation network. Each roadway is di-
vided into discrete cells. Each cell is 7.5 meters long

2The notion of universality although a little more subtle can
be defined for space and time complexity classes; See [43].

and one lane wide. Each cell contains either a vehi-
cle (or a part of a vehicle) or is empty. The micro-
simulation is carried out in discrete time steps with
each step simulating one second of real traffic. In each
time step, a vehicle on the network makes decisions
such as accelerate, brake or change lanes, in response
to the occupancy of the neighboring cells. We can rep-
resent the above model in our SDS framework. For
ease of exposition, we assume a single lane road which
can be modeled as a one dimensional array of cells,
with each cell representing a certain segment of the
road. The state of each car (driver) may assume one
of Ve + 1 possible integer values; these values corre-
spond to discrete speeds from 0 to vez- The state of
each cell may assume one of v, + 2 different values,
the additional value being used to represent an empty
cell. In the TRANSIMS system implementation, v, 44
was usually a small integer (such as 5). The rule by
which a car updates its state (location, speed and
lane) is a simple function of its state and the states
of the cars in the neighboring cells. It is now easy
to see how the situation can be formulated in terms
of an SDS. An important point to note is that un-
like cellular automata (CA) which are synchronous,
different choices of the order for updating the cells
may yield completely different dynamics in the case
of SDS. For instance, in the case of the single-lane
system, updating the states from front to back acts
like a perfect predictor and thus never yields clusters
of vehicles. On the other hand, updating from back
to front yields more realistic traffic dynamics [7].

Given the above model, a simulation question that
arises in practice can be transformed into an appro-
priate analysis question for SDS. For instance, the
question of whether the system starting from a given
initial configuration will ever reach a traffic-jam-like
configuration can be cast as a reachability problem
for an appropriate SDS.

Consider the second assertion. Following [27], we
say that a system is predictable if basic phase space
properties such as reachability and fixed point reach-
ability can be determined in time which is polynomial
in the size of the system specification. Our PSPACE-
completeness results for predicting the behavior of
“very simple” SDS (e.g. SDS in which the domain of
state values is Boolean and each node computes the
same symmetric Boolean function) essentially imply
that the systems are not easily predictable; in fact,
our results imply that no prediction method is likely
to be more efficient than running the simulation itself.

Finally, we consider the third assertion. We show
that SDS are “universal” in that any reasonable model



of simulation can be “efficiently locally simulated” by
appropriate SDS that can be constructed in polyno-
mial time. The models investigated include cellu-
lar automata, communicating finite state machines,
multi-variate difference equations, etc. Moreover, in
most of these cases SDS can also be locally simulated
by these devices. Thus, lower bounds on the com-
putational complexity of deciding some properties of
SDS yield as direct corollaries analogous results for
those models. The models include the following:

(a) Classical CA (see for example, [101]) and graph
automata [78, 70], which are a widely studied
class of dynamical systems in physics and com-
plex systems.

(b) Discrete Hopfield networks [48, 34], which are a
classical model for machine learning, and

(¢) Communicating finite state machines [3, 2],
which are widely used to model and verify dis-
tributed systems.

The main difference between graph automata and
SDS is that in the former case node states are up-
dated in parallel while in latter case they are up-
dated in a specified sequential order. The notion
of universality is applicable not only in the context
of classical computability theory, but is also appli-
cable for for space and time complexity classes; See
[43, 101, 80]. It can be shown that appropriately
defined SDS are universal for each of the “natural”
space and time complexity classes [21, 22, 52]. For
instance, SDS with when the interaction graph is de-
fined using natural specifications and the local transi-
tion functions are over finite domain yield a universal
device for PSPACE. When the graph is specified suc-
cinctly using periodic specifications yielding graphs
exponentially larger than the specifications and with
local transition functions over finite domains we get a
universal device for EXPSPACE. We can also get a
universal device for EXPSPACE by having polyno-
mially many nodes but exponential amount of mem-
ory at each node. Finally, using a simple simulation
of a two counter machine, we can show that a two
node SDS with each node computing functions over
integers are universal in the classical sense — they are
as powerful as Turing machines [21, 22].

Figure 2: The graph Circg.

3 Overview and Discussion of
Results

We give a brief overview of our results on SDS and
discuss their implications. In Section 5 we give for-
mal statements of these results. Due to lack of space,
we only outline some of the results here. Addi-
tional results and their discussion can be found in
[11, 12, 13, 15, 17, 20, 21, 22, 23, 87, 89).

Equivalence. Theorem 5.1 deals with the question of
equivalence of two SDS and is a well-known problem
in the context of validating computer simulations. Es-
sentially, we discuss the question on how many func-
tionally different® systems can be obtained by just
varying the corresponding update schedule?

Ezxzample 3: Order dependence of SDS: The

function maj, : F3 — F, is defined by

. _ 1, z1+z24+23>2

maj(z1, 22, 25) = 0, otherwise,

where "+" denotes the addition in the ring (Z,+).
Consider the SDS induced by maj; over the graph
Circg as shown in figure 2. It is easy to verify that
zo = (1,1,1,0,0,0) is a fixed point for any SDS of the
form [Majcy,e,, 7). (Clearly, fixed points are invariant
with respect to schedule.) Using the schedule m; =
(2,1,3,5,4,6) we see that the states (1,0,1,0,0,0),
(1,0,1,0,1,0) and (1,1,1,0,1,0) are mapped to the
fixed point xo. These are the only states apart from
xo itself that is mapped to xp.

By changing the schedule to 72 = (1,3,2,4,6,5) no
states apart from xq itself are mapped to xg. Thus by
a change of schedule the “basin of attraction” of the
fixed point z¢ has vanished. See figure 3.

In the context of this question various deep rela-
tions between the number of functionally different
SDS and certain combinatorial quantities associated
to their underlying dependency graph arise. A fixed
point of an SDS is a configuration € such that the
transition out of € is to C itself. A configuration

3see figures 4 and 5
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(1,0,1,0,0,0) = (1,1,1,0,0,0) < (1,0,1,0,1,0)

i
(1,1,1,0,1,0)

)

(1,1,1,0,0,0)

Figure 3: The phase space component of [Majgiyc, , 71]
(top) and [Majg;yc,, m2] (bottom) containing the fixed
point (1,1,1,0,0,0). The basin of attraction of the
fixed point (1,1,1,0,0,0) vanishes under the change
of schedule 7 — m5.
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Figure 4: The phase spaces of the SDS
Norcire,, (1234)] and [Norcire,, (1324)]. In these
4 4

SDS all Boolean functions Fy, Fy, F3, Fy are Nor
functions. On the lhs. the underlying update order
is (1234), whereas on the rhs. the order is (1324).
Obviously, the phase spaces are not isomorphic as
directed graphs.

that has no predecessor is called a Garden of Eden
configuration [90, 101].

Fized Points, Garden of Eden & Nor-systems. The
question on the sharpness of a combinatorial upper
bound on this number leads to Theorem 5.2 which
describes the structure of SDS induced by Boolean
nor function. In fact, it appears that these systems
play a special role in SDS analysis, and they turn
out to be the only SDS which are fixed-point free
over arbitrary base graphs. In the figures 4 and 5 we
present two complete phase spaces of SDS induced by
nor over the square, Circy. Both figures allow us to
illustrate particular features of SDS induced by nor
functions: They exhibit only non-periodic points that
are Garden-of-Eden states and changing the underly-
ing update schedule may (see figure 4) or may not (as
shown in 5) induce functionally different SDS.

A related question in this regard is to characterize
the computational complexity of computing various
phase space configurations. Our results show that in
general it is NP-hard to decide if a given SDS has a
Garden-of-Eden configuration (Fixed Point configu-
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Figure 5: Using the update orders ¢ = (1234) and
m = (3214) and the Boolean function Nor for Fj,
F», F3, Fy the phase spaces of the corresponding SDS
[Norcire,,0] (rhs.) and [Norgire,,n] (lhs.) are not
identical although their digraphs are isomorphic. The
digraphs differ, for instance, at the following states:
the preimages of 0000 are not all identical, the preim-
ages of 0001 differ, state 0100 has different preimages
and maps into a different state.

ration respectively). The hardness results essentially
rely on the non-deterministic nature of the problem.
Moreover, counting the number of such configurations
is also typically #P-complete.* On the other hand
when the underlying graph has a special graph theo-
retic structure (the graph is of bounded treewidth®)
then these invariants can be computed in polynomial
time.

Reachability, Universality, and Local Simulation.
Another very important question regarding the phase
space of an SDS is: Can one reach a given global con-
figuration starting from another given global configu-
ration? This is the well-known reachability problem,
and it has direct implications to a host of other com-
binatorial questions. Not surprisingly, it turns out
that the reachability question is PSPACE-hard even
for SDS whose local transition functions are Boolean
symmetric functions. The result is obtained via a se-
quence of “local simulations” that begin by simulating
a linearly bounded Automata (LBA) by an SDS with
finite domain. By allowing an exponential memory
at each node or allowing exponentially many nodes,
one can in fact obtain EXPSPA CE-hardness results.
An important implication of this stated very in-
formally is Simulation of such dynamical systems to
discern their dynamical properties is an optimal com-
putational strategy or that simulation is not optional.
Moreover the systems for which the hardness results
are so simple (essentially, local transition functions
can be simple threshold or inverted thresholds) that
any realistic socio-technical system is likely to have

4We refer the reader to any of the classical texts on com-
plexity theory for a definitions of these well-known complexity
classes and their significance.

5Informally, a class of graphs are said to have bounded
treewidth if they have a recursive separator of bounded size.



such systems embedded in them. This is important
since, one might ask, whether some other analytical
method or an efficient algorithm can be used instead
of iterated composition of local maps.

In the past, communicating finite state machines
(CFSM) [40, 45, 46, 47, 71, 82] have been used exten-
sively to specify and verify important properties such
as liveness, deadlock, etc. of communication proto-
cols, models of infectious diseases, driving logics, etc.
It is easy to see that CFSMs are closely related to
SDS. Ideally, we would like to express the systems
in “higher level SDS” (or CFSMs and then translate
them into simpler kinds of SDS (akin to compilation).
This is because the language (model) that is most
convenient to describe the underlying system might
not necessarily be the best model for actual simula-
tion of the system on a HPC architecture. Thus it
is conceivable that such simpler systems obtained via
translation could be mapped on HPC architectures
and the resulting maps could be analyzed for perfor-
mance bottlenecks. Simpler systems can also be po-
tentially used to verify the correctness of the ensuing
protocols. To achieve this, such translations should
be efficient and should preserve the basic properties
across the original and the translated system. In re-
cent years (see [69, 36, 98, 29], several authors have
suggested building cellular automata based computers
for simulating physics. The results presented here are
pertinent to this basic theme in two ways. We believe
that SDS based computers are better suited for simu-
lating socio-technical systems. Second, regardless, of
the final model, it is indeed necessary to provide effi-
cient simulations (translations) of problems specified
in one model to problem specified in another model.
Without such simulations, building such computers is
likely to be of very limited use.

A motivation for obtaining complexity theoretic re-
sults reported here is derived from the papers of Buss,
Papadimitriou and Tsitsiklis [27], Moore [72, 73], Sut-
ner [96] and Wolfram [101]. Specifically, we undertake
the computational study of SDS in an attempt to in-
crease our understanding of SDS in particular and the
complex behavior of dynamical systems in general.
SDS are discrete finite analogs of classical dynami-
cal systems, and we aim to obtain a better under-
standing of “finite discrete computational analogs of
chaos”. As pointed out in [27, 72, 73], computational
intractability or unpredictability is the closest form of
chaotic behavior that such systems can exhibit. Ex-
tending the work of [27], we prove a dichotomy re-
sult between classes of SDS whose global behavior is
easy to predict and others for which the global be-

havior is hard to predict. In [101], Wolfram posed
the following three general questions in the chapter
entitled “Twenty Problems in the Theory of Cellu-
lar Automata”: (i) Problem 16: How common are
computational universality and undecidability in CA?
(ii) Problem 18: How common is computational ir-
reducibility in CA? (iii) Problem 19: How common
are computationally intractable problems about CA?
Our results [17, 20, 21, 22] for SDS (and for CA as
direct corollaries) show that the answer to all of the
above questions is “quite common”. In other words, it
is quite common for synchronous dynamical systems
(i.e., CA) as well as sequential dynamical systems to
exhibit intractability. In fact, our results show that

such intractability is exhibited by extremely simple
SDS and CA.

Factorization of SDS. We just saw that one could
in appropriate cases “locally simulate” one SDS 8 by
another SDS 7. In most cases such transformations
yield an SDS T that are somewhat larger (although
the size of T is of the same order as the size of 8).
The next set of results aim at creating equivalent but
“smaller” SDS. Typically, the phase space of an SDS
has more than one attractor or component and con-
sequently, a time series will only visit parts of phase
space. Thus, in the context of computer simulations,
there will be valid states or regimes that are never
realized. Accordingly, one is interested in construct-
ing a “reduced” simulation system capable of pro-
ducing a somewhat related dynamics in the “essen-
tial” regimes and that ideally disposes of the “non-
essential” regimes. In this paper we try to address
this question by establishing an embedding of SDS-
phase spaces under certain conditions. To be more
explicit, we will show how to relate an SDS ¢ over
a graph Y and an SDS v over a smaller sized-graph
Z if there exists a covering map p : Y — Z. Let us
illustrate this idea by considering the following;:

Example 4: Morphism Concepts for SDS. We

20 | 3

Figure 6: The graphs Q3 and K.

will consider sequential dynamical systems over Q3
and K, induced by the parity function.

The two graphs Q3 and K, are related by the map



(graph morphism) p : Q3 — K4 by p~1({1}) = {0, 7},
p~1({2}) = {1,6},p1({3}) = {2,5}, and p~'({4}) =
{3,4}. Note that p is a covering map.

The map p naturally induces an embedding 7 :
F; — F3 by (7(2))k = Zp(r), that is,

7'(.'1]'1,.'1:2,@'3,.’1:4) = ($1,$2,x3,$4,$4,$3,x2,$1) -

Let # = (1,2,3,4) € Si and let m =
(0,7,1,6,2,5,3,4). We now have a commutative dia-
gram
[Park,,(1,2,3,4)]

F; F;
X K
[Pang 77rp]

F; - 3

Let z = (1,0,0,0). Straightforward calculations
give [Parg,,(1,2,3,4)](1,0,0,0) = (1,1,0,0), and
further iterations give the orbit

(1507050) — (15 17050) - (05 17 150)

T —

(070707 1) ~ (0707 ]-7 1) .

Note that
[P I 7(1’273’4)]
(1,0,0,0) ——* (1,1,0,0)
l [Pang,wp] l
(17070707070707 1) I (17 170707070, 17 1) -

By applying the map 7 to the cycle of (0,0, 0, 0) under
[Parg,,(1,2,3,4)] it is easily verified that we obtain
the orbit of (1,0,0,0,0,0,0,1) under [Pargg, m)):

(17050705())0507 1) — (17 150705())05 17 1)

l

(0,1,1,0,0,1,1,0)

l

(070507 ]-5 1703070) <~ (0705 ]-7 ]-a 17 15070) .

A more lengthy calculation will show that the entire
phase space of [Park,, (1,2,3,4)] can be embedded in
the phase space of [Pargs,mp]. The former SDS has
one fixed point and three orbits of length 5 while the
latter SDS has one fixed point and 51 orbits of length
5.

Accordingly a morphism between two SDS will be
a tuple consisting of a corresponding graph morphism
between their dependency graphs and a morphism be-
tween their phase spaces, therefore explicitly relating
their dynamics. Theorem 5.8 will guarantee the exis-
tence of such morphisms in some generality.

3.1 Applications

Hopfield Networks. As discussed earlier,
our lower bounds for reachability problems for
(BooL, AWT)-SDSs directly imply that reachabil-
ity problems for Hopfield networks with sequential
update and asymmetric weights are PSPACE-hard.
Moreover, the result holds for very small edge weights,
bounded degree and bounded pathwidth (and hence
treewidth) graphs. To our knowledge, such re-
sults have not been reported earlier. Our model
of SDS with simple-threshold and simple-inverse-
threshold functions and the corresponding PSPACE-
hard lower bounds for the reachability problems sug-
gest a potentially new variant of Hopfield networks.
Finally, for Hopfield networks with 3-simple-threshold
functions, we obtain a better upper bound on the
length of transients, and hence on the convergence
time.

Reference [34] presents a PSPACE-hardness re-
sult for Hopfield networks with asymmetric edge
weights and fully parallel updates. To our knowledge,
the result for sequential update was not known ear-
lier. Moreover, discrete dynamical systems with only
simple-threshold and simple-inverted-threshold func-
tions have not been considered in the literature to our
knowledge. Noting the correspondence between Hop-
field networks and the classes of SDS considered here,
we get as direct corollaries analogous hardness results
for Hopfield networks under sequential updates.

Communicating finite State Machines (CFSMs).
CFSMs have been widely studied as models of con-
current processes. As a result, a number of mod-
els have been proposed in the literature. Since these
models were proposed for different applications, they
are not always equivalent. We refer the reader to
[3, 28, 40, 44, 46, 71, 82, 84, 94, 97] for definitions,
results, applications and the state of current research
in this area. The basic setup consists of a collection of
finite state machines. These machines communicate
with each other via explicit channels [28, 82, 40] or
via action symbols [84, 94]. Our results apply to both
these variants. To see this, we note the following;:



1. Simple-threshold and simple-inverted-threshold
functions can be easily represented as finite
state machines (FSMs) that essentially emulate
a counter. The FSM corresponding to each node
of an SDS consists of two parts, namely a control
part and a part simulating the threshold func-
tion. (For some models, we can sometimes elim-
inate the control part.)

2. Sequential update of the nodes of an SDS can be
simulated by using n distinct (one for each ma-
chine) action symbols that in effect imply that
each FSM is updated in the order determined
from the ordering used for the given SDS. When
dealing with explicit channels, this can be done
by initializing all the FIFO I/O channels and
using the control part to make sure that each
machine corresponding to a threshold function
makes a transition only after all its inputs have
been received. At that point, the transition sim-
ply consists of counting how many inputs are 1
and how many of them are 0. After this, the ma-
chine posts the result of evaluating the function
on each of the output channels.

Given these observations, the remaining details of
the simulation are fairly straightforward. Our re-
sults show that the PSPACE-hardness of reachabil-
ity problems for CFSMs holds for extremely simple
individual automata. Specifically, the automata use
a very simple model of concurrency and the under-
lying graphs are of bounded degree. This points out
that a bounded amount of concurrency is sufficient to
yield computational intractability results for reacha-
bility problems for CFSMs. Thus the results extend
some of the earlier results in [94, 84] on the complexity
reachability problems for communicating state pro-
cesses.

The lower bounds can be viewed as a tradeoff be-
tween the three basic parameters that characterize
communicating finite state processes: (i) the power
of individual automata, (ii) the interconnection pat-
tern and (iii) the communication paradigm (e.g. chan-
nels, action symbols). For instance, it is easy to prove
the PSPACE-hardness of reachability problems for a
simple chain of communicating automata, where each
automaton essentially encodes the transition func-
tion of an LBA. On the other hand, we can also
show that reachability problems are PSPACE-hard,
when each individual automaton essentially mimics
a simple-threshold or a simple-inverse-threshold func-
tion. In either case, the message passing mechanism
may be explicit channels or action symbols.

4 Preliminaries

We assume the reader is familiar with basic concepts
in computational complexity, algorithms, algebraic
graph theory and dynamical systems, otherwise see
[1, 26, 30, 38, 80, 99, 90, 101].

A Sequential Dynamical System (SDS) 8 over
a given domain D of state values is a triple (Y, F, 7),
whose components are as follows:

1. Y(V,E) is a finite undirected graph without
multi-edges or self-loops. Y is referred to as the
underlying graph or base graph of 8. We use
n to denote |V | and m to denote |E|. The nodes
of Y are numbered using the integers 1, 2, ..., n.

2. For each node i of Y, F specifies a local tran-
sition function, denoted by f;. This function
maps D% T into D, where §; is the degree of node
i. Letting N (i) denote the set consisting of node
i itself and its neighbors, each parameter of f;
corresponds to a member of N (7).

3. Finally, 7 is a permutation of {1,2,...,n} speci-
fying the order in which nodes update their states
using their local transition functions. Alterna-
tively, m can be envisioned as a total order on
the set of nodes.

We set (Sz = |N(Z)| - ]., d(Y) = mMaXi<i<n 6z The
increasing sequence of elements of N (7) is referred to
as

N(i):(jla--'ai7“'7j5i)' (1)

Each Y-vertex ¢ has associated a state x; € Fs, and

foreach k = 1,...,d+1 we have a symmetric function
fw) : B — F>. We introduce the map

proji] : Fy - Fyi*

(xla"'aa;n) = (mju"-axia---axjsi)a

and denote the permutation group over k letters by
Sk. For each i there exists a (Y-local) map F; y given
by

fis:41) © proj[i](z),

(1,5 Tim1,Yi(T), Tig1, - -, T)-

yi(z)
Fiy(r) =
With this notation, we can alternatively specify a se-
quential dynamical system as

[Bv, ]: S — Fy'D

v, 7] =[] Frti).y = Famyv o0 Frzyy o Frqa)y -

i=1



We call [§y, 7] the sequential dynamical system (SDS)
over Y with respect to the ordering .

A configuration C of § can be interchangeably
regarded as an m-vector (ci,¢s,-..,¢,), where each
¢; €D,1<¢<n,or as afunction €:V — D. From
the first perspective, ¢; is the state value of node i
in configuration €, and from the second perspective,
C(4) is the state value of node 7 in configuration C.

Computationally, each step of an SDS (i.e., the
transition from one configuration to another), in-
volves n sub-steps, where the nodes are processed
in the sequential order specified by permutation 7.
The “processing” of a node consists of computing
the value of the node’s local transition function and
changing its state to the computed value. The fol-
lowing pseudo code shows the computations involved
in one transition.

for i=1 to n do

(i) Node (i) evaluates fr(;. (This computation
uses the current values of the state of 7(i) and those
of the neighbors of 7(i).) Let z denote the value com-
puted.

(ii) Node 7 (i) sets its state sq(;) to .
end-for

We let Fg denote the global transition function
associated with 8. This function can be viewed either
as a function that maps D" into D™ or as a function
that maps DY into DY. Fg represents the transitions
between configurations, and can therefore be consid-
ered as defining the dynamical behavior of the SDS
S.

Let J denote the designated configuration of 8§ at
time 0. Starting with J, the configuration of § af-
ter ¢ steps (for ¢ > 0) is denoted by £(8,7,t). Note
that £(8,7,0) = J and £(8,7,t + 1) = Fs(&(8,7,1)).
Consequently, for all t > 0, £(8,7,t) = Fs*(J).

Recall that a configuration € can be viewed as a
function that maps V into . As a slight extension
of this view, we use C(W) to denote the states of the
nodes in W C V.

A fixed point of an SDS § is a configuration € such
that Fs(€) = €. An SDS 8§ is said to cycle through
a (finite) sequence of configurations {Cy, Co, ..., C,.) if
Fs(€y) = Gy, F5(Cy) = €3, ..., F5(C,_1) = €, and
Fs(€,) = €. A fixed point is a cycle involving only
one configuration.

The phase space Pg of an SDS 8 is a directed
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graph defined as follows: There is a node in Pg for
each configuration of 8. There is a directed edge from
a node representing configuration € to that represent-
ing configuration €' if Fs(€C) = €'. The phase space
of the SDS 8 = [§y,n] will be denoted by I'[Fy,n].
In such a case, we also say that configuration C is a
predecessor of configuration €'. Since SDS are de-
terministic, each node in its phase space has an out
degree of 1. In general, the phase space Ps may have
an infinite number of nodes. When the domain D of
state values is finite, the number of nodes in the phase
space is |D|™. Figure 7 shows an example of an SDS
and its phase space.

12-8T(a,b,c) 2.8T(ab,e) ||
|

Figure 7: Example of an SDS and its phase space.
Figure A shows the underlying graph and the local
transition functions. Each configuration is specified as
a triple (sq, 85, 8.). Figure B shows the phase space
with 7 = {a,b,c). Figure C shows the phase space
with 7 = (b, ¢, a). Finally, Figure D shows the phase
space when all the nodes are updated in parallel (as
in CA).

Fixed points are nodes in phase space with self
loops. Cycles with more than one node are called
limit cycles (or periodic cycles) and the nodes on
any limit cycle are called periodic points. In Pg, a
transient is a simple directed path such that no edge
of the path appears in any cycle in Pg.

Note that a node in the phase space may have mul-
tiple predecessors. This means that the time evolu-
tion map of an SDS is, in general, not invertible but



is contractive. The existence of configurations with
multiple predecessors also implies that certain config-
urations may have no predecessors. A configuration
with no predecessors is referred to as a Garden-of-
Eden configuration. Such configurations can occur
only as initial states and can never be generated dur-
ing the time evolution of an SDS.

(From now on, unless otherwise specified, we as-
sume that the domain of a given SDS (or SDS) is
finite and that each local transition function can be
evaluated in polynomial time.

Monotone and threshold functions are well-studied
subclasses of Boolean functions [20, 58]. As SDS un-
der these two classes of local transition functions will
be considered throughout this paper, we provide the
necessary definitions in this subsection.

Given two Boolean vectors X = (z1, 2, ..., z,) and
Y = (y1,92,--.,Yq), define the relation “<” as fol-
lows: X <Yifa; <y;,1 <i<gq A ginput
Boolean function f is monotone if X < Y implies
that f(X) < (V).

There are several other equivalent definitions of
monotone Boolean functions; for example, a Boolean
function is monotone if it can be implemented using
only operators from the set {And, OR}.

A k-simple-threshold function takes on the
value 1 if at least k& of the Boolean inputs have value
1; otherwise, the value of the function is 0. A k-
simple-inverted-threshold function takes on the
value 0 if at least k& of the Boolean inputs have value
1; otherwise, the value of the function is 1.

We use the notation (Boor, ST)-SDS for the
class of SDS where each local transition function is
a simple-threshold function. When the set of local
transition functions of an SDS is allowed to consist of
both simple-threshold and simple-inverted-threshold
functions, the resulting class of SDS is denoted by
(Boot, SIT)-SDS.

Threshold functions, which are a generalization of
simple-threshold functions, are defined as follows.

A g-input threshold function has ¢ Boolean in-
puts z1, x2, ..., x4 with respective weights w, ws,
.., Wq, a Boolean output y and a threshold a. The
value of y is 1iff Y7 | wiz; > o
The class of SDS over the Boolean domain where
each local transition function is a threshold function
is denoted by (BooL, AWT)-SDS. In such SDS, the
weights used in the local transition functions at the
two nodes of an edge may not be equal. A useful
subclass of (BooL, AWT)-SDSs are those in which
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the weights used in local transition functions are sym-
metric; that is, for each edge, the weights used by
the local transition functions at the two nodes of the
edge are equal. We denote this subclass of SDS by
(BooL, SWT)-SDSs. As will be seen, permitting
threshold functions that use weights in an asymmetric
manner changes the complexity of reachability prob-
lems significantly.

In order to state Theorem 5.1 in the next section we
introduce the following notation. Let G be a group
and let Y be an undirected graph with automorphism
group Aut(Y). Then G acts on Y if there exists a
group homomorphism u : G — Aut(Y). If G acts
on the graph Y, then its action induces (i) the graph
G\'Y where

v[G\Y]={G@)|iev[Y]} and
e[G\Y]={G{i,k}) | {i,k} € e[Y]},
and (ii) the surjective graph morphism 7g given by
mg:Y — G\Y, i~ G®).

Furthermore we will study SDS that are induced by

the multi-sets (nor()) and (nand(y)), where
TIATg - AT, (2)

3)

5$k)

5$k)

norx) (21, - - -

na.nd(k)(xl,... TIVZTE--- VT
We will refer to these SDS as [Nory,n] and

[Nandy, 7], respectively. We finally define basic com-

putational problems that will be considered here.

1. Given an SDS 8 over a domain D, two config-
urations J, B, and a positive integer ¢, the t-
REACHABILITY problem is to decide whether §
starting in configuration J will reach configura-
tion B in ¢ or fewer time steps. We assume that
t is specified in binary. (If ¢ is specified in unary,
it is easy to solve this problem in polynomial
time since we can execute 8 for ¢ steps and check
whether configuration B is reached at some step.)

. Given an SDS 8 over a domain ID and two con-
figurations J, B, the REACHABILITY problem is
to decide whether 8§ starting in configuration
J ever reaches the configuration B. (Clearly,
for t > |D|*, t-REACHABILITY is equivalent to
REACHABILITY.)

. Given an SDS § over a domain D and a con-
figuration J, the FIXED POINT REACHABILITY
problem is to decide whether § starting in con-
figuration J reaches a fixed point.



Given an SDS 8 = (Y(V, E),F, ) and a configu-
ration €, the PREDECESSOR EXISTENCE problem
(abbreviated as PRE) is to determine whether
there is a configuration €' such that Fg(C') = C.

Given a partially specified SDS § consisting of
graph Y(V, E), the set F of symmetric Boolean
functions associated with the nodes of G, an ini-
tial configuration €' and a final configuration C,
the PERMUTATION EXISTENCE problem (abbre-
viated as PME) is to determine whether there is
a permutation 7 for 8 such that Fg(€') = C.

Given an SDS 8 = (Y,J,w), the GARDEN OF
EDEN EXISTENCE problem (abbreviated as GEE)
is to determine whether 8§ has a GE configura-
tion. The corresponding counting problem, ab-
breviated #GE, is to determine the number of
GE configurations of 8.

Given an SDS 8 = (Y,J,7), the FIXED POINT
EXISTENCE problem (abbreviated as FPE) is to
determine whether 8§ has a fixed point. The cor-
responding counting problem, #FP, asks for the
number of fixed points in the phase space of 8.

Let a configuration € of an SDS be called a
Strong Garden-of-Eden (SGE) configuration if it
is a Garden-of-Eden configuration under every node
permutation. Analogous to the GARDEN OF EDEN
EXISTENCE problem, the following problem (called
the STRONG GARDEN OF EDEN EXISTENCE problem,
abbreviated as follows: Given the underlying graph
Y (V, E) and the set F of local transition functions of
a partially specified SDS 8, determine whether § has
an SGE configuration.

5 Scientific Foundations

In this section, we outline our mathematical and com-
putational results on sequential dynamical systems.
Many of these results are quite general and as corol-
laries yield appropriate results for other classes of dy-
namical systems as well. The primary research ob-
jective is to characterize the phase space properties
by inspecting the underlying representation (i.e. its
intentional form) rather than looking exhaustively at
the phase space itself (its extensional form). The re-
sults obtained include combinatorial characterizations
of phase space, bounds on the various phase space fea-
tures, e.g. fixed points, Garden-of-Eden states, etc.
Section 3 has already outlined the results and dis-
cussed some of its implications.
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5.1 Equivalence

A permutation 7 = (i1,...,4,) induces an orienta-
tion O(Y), of Y by setting for {if,i,} € e[Y] and
k < r, o{ir,ir}) = ix and t({ig,ir}) = i,. By con-
struction (Y, is acyclic and we have a mapping
w: Sy = Acye(Y), m = O(Y)r. w is surjective and
for any 7,0 € S, O = O, implies [§y, 7] = [§y, o]
Accordingly, we obtain that

h: Acyc(Y)
Ox

— A{Bv,7]| 7€ Sa},
= [SYvﬂ—]

is well-defined.

One central question in SDS analysis is that of two
SDS [y, 7] and [§y, o] being equivalent. Here, equiv-
alence of SDS is defined with respect to a category
€[Y, §y] whose objects are the digraphs which are the
corresponding phase spaces of the SDS. Here, we will
consider the category €g4;[Y,y] having all digraph-
morphisms as morphisms and therefore considering
two SDS [Fy,n] and [Fy,n'] as to be equivalent if
and only if their corresponding digraphs are isomor-
phic. In the following we will analyze the set of non-
equivalent SDS for fixed Y and §y which we de-
note by E[Y,§y]. SDS with different Boolean func-
tions can be equivalent, too: let [§y,n] be an ar-
bitrary SDS and inv : Fy — F2, inv(z;) = (T;)
and B = (inv o F,y o inv). Then [§y,n] and
[V, 7] are equivalent SDS. In particular, [Nory,n]
and [Nandy, 7] are equivalent.

In our first result we give a combinatorial upper
bound on the number of non-equivalent SDS which
is known to be sharp for certain classes of SDS. Let
Acyc(Y) denote the set of acyclic orientations of ¥’
and set a(Y) = |Acyc(Y)|.

Theorem 5.1 [87] Let Y be an arbitrary graph, w €
Sp and let [§y,n] be an SDS over Y. Setting

1
AY) = m Z la((v) \ Y)| (4)
yEAUL(Y)
the following assertions hold:
[E[Y,3y]] < A(Y)
|E[Star,, Norstar, ]| = A(Star,) =n .

5.2 Nor Systems, Preimages, Garden-
of-Eden & Fixed Points

Theorem 5.1 rises the following question on SDS in-
duced by nor functions:



For which graphs ' Y does

#)  [E[Y,Nory]| = A(Y)

hold. In fact in [15] additional graph classes are shown
to have property (#) and it could be speculated that
(#) holds for arbitrary graphs Y. Clearly, in this
context, the general structure of SDS of the form
[Nory,n] is of central importance. In the following
theorem we will provide some insight into these sys-
tems.

Let J(Y) be the set of Y-independence sets. We will
next analyze the structure of SDS that are induced by
a multi-set (f(x))x such that they are fixed-point-free
for any graph Y:

Theorem 5.2 [87] Let (fim))m be a family of
Boolean, symmetric functions inducing for an arbi-
trary graph 'Y the fized point—free SDS [§y,n]. Then
[Sy, 7] is equivalent to [Nory,].

Suppose [§y,n] is equivalent to [Nory,n], then we
have:

(a) each periodic point of [§y, ] corresponds uniquely
to a Y-independence set, i.e. there exists a bijective
mapping ¢ : Per[Fy,n] — I(Y).

(b) each vertex in the associated phase space is either
periodic or it has in-degree 0. Furthermore, (0) has
mazximal in-degree in the associated phase space.

(¢) Let Y = Line,, or Y = Circ,. Then equivalence
of two SDS implies M\((0);) = (0);. In particular, the
corresponding orbits containing (0) are isomorphic.
(d) Suppose Aut(Y) is transitive and there exist
p,o,m € Sy, such that [§,(v),0]| =[Sy, 7] holds. Then
we have p € Aut(Y) and O(Y),-1, = O(Y ).

Using combinatorial result in Theorem 5.2 and ad-
ditional combinatorial arguments, we can obtain ad-
ditional results concerning [Nory,n]. These results
can be viewed as providing a computational analogue
of Theorem 5.2.

Theorem 5.3 Given a [Nory,n], n be the number
of nodes of Y. Then

(a) For each n, 3 [Nory,n], s.t. the phase space of
I'[Nory,n] consists of limit cycles of length Q(2").
(b) An SDS [Fy,n] for which each f; is drawn
from the set { Or, Nor, Nand, And } has an SGE
configuration.

Next, we focus on the PRE problem and the GEN-
PME problem for SDS.

Theorem 5.4 The PRE problem is NP -complete for
any of the following restricted classes of SDS [Fy, ]
: (i) Each f; (local transition function) is a k-simple-
threshold function, for any k > 2, (i) each f; is the
exactly-k function for any k > 1, (i) each f; is drawn
from the set {Or, And } and (iv) SDS whose under-
lying graphs are planar.

Theorem 5.5 There exists polynomial algorithms
for the PRE problem for SDS [Fy,n] for which each
fi is a non-empty subset of one of the following sets:
{Or, Nor }, {And, Nand } and {Xor, Xnor }.

There ezists polynomial time algorithms for the
GEN-PME problem for SDS [Fy,n] for which each f;
is drawn from the set { Or, Nor, Nand, And }.

These results show an interesting contrast between
the complexity of GEN-PME and PME problems for
Nor-SDS and Nand-SDS.

5.3 Reachability

We first consider variants of the reachability problems
as defined below.

Using a direct reduction from the acceptance prob-
lem for linear bounded automata (LBA), we have the
following hardness result.

Theorem 5.6 [20, 21, 52] The t-REACHABILITY
problem is PSPACE-complete for (BooL, SIT)-
SDSs. The reachability problems remain PSPACE-
complete for SDS [Fy,n| restricted to instances in
which either (i) each f; is either a simple threshold
function or a simple threshold function or (i) each f;
is a weighted threshold but the functions can be asym-
metric. Moreover, the results hold even under all of
the following restrictions:  (a) The mazimum node
degree in the underlying graph is a constant, (b) The
bandwidth (and hence the pathwidth and treewidth) of
the underlying graph is a constant, (¢) The num-
ber of distinct local transition functions used is a con-
stant.

The above hardness results can be viewed as indi-
cating a trade-off between (i) asymmetry in informa-
tion exchange between nodes (ii) the types of thresh-
old functions that are sufficient to make the prob-
lems computationally intractable and the (iii) inter-
connectivity structure of the underlying graph. The
results should be compared with the work of Buss,
Papadimitriou and Tsitsiklis [27] on the complexity
of t-REACHABILITY problem for coupled automata.
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The results show that, in contrast to the polynomial
time solvability of the reachability problem for glob-
ally controlled systems of independent automata, a
small amount of local interaction suffices to make
the reachability problem computationally intractable.
Our reduction leads to an interaction graph that is
of constant degree, bandwidth bounded and regular.
(The interaction graph is obtained from a simple path
by replacing individual nodes in the path by groups
of nodes that interact only with nodes in neighboring
groups.)

In contrast to the PSPACE-hardness results for
(BooL, AWT)-SDSs, we show the following polyno-
mial time solvability result for reachability problems.
These results use the characterization of the phase
space in [17, 89] for such systems.

Theorem 5.7 [20, 21, 52] The t-REACHABILITY,
REACHABILITY and FIXED POINT REACHABILITY
problems for 8 [Fy,n| can be solved in polynomial
time for the following classes of SDS.

1. SDS such that each f; is symmetric and in which
all the node and edge weights are strictly posi-
tive. Let wmax denote the largest value among
the node and edge weights, and let wnin denote
the smallest node weight. If the ratio Wmax/Wmin
s bounded by a polynomial in the size of S.

2. SDS in which f; is a linear function over a uni-
tary semi-ring and
3. SDS in which f; is a Nor function and the to-

tal number of independent sets of the vertices is
polynomial.

Our main results provide a dichotomy between hard
to predict and easy to predict classes of SDS. First,
the results show that for SDS restricted to symmetric
Boolean function are hard to predict while the class
of (BooL, SYMMON)-SDSs is easy to predict. Simi-
larly, they show that SDS induced by Boolean func-
tions that are either threshold or inverse-threshold
functions are hard to predict while SDS restricted to
Boolean functions that are just threshold are easy to
predict.

Conjecture: [21] REACHABILITY and -
REACHABILITY problems for Nor-SDS are PSPACE-
hard; i.e. Nor-SDS are “Universal”.

The result would be interesting since Nor is a “uni-
versal” Boolean function, i.e. any Boolean function
can be realized by a circuit made of Nor elements. If
the above conjecture is true then Nor based systems
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would also by “dynamically universal”, i.e. discrete
dynamical system over finite domain could be simu-
lated using only a combination of Nor local transition
functions.

When the domain D is Boolean and the operators
of the unitary semi-ring are Or (+) and And (*), each
linear local transition function is either Xor (exclusive
or) or Xnor (the complement of exclusive or). Denote
this class of SDS by (USRING, LINEAR)-SDSs. Thus,
Theorem 5.7 implies that the FIXED POINT REACHA-
BILITY problem for such SDS can be solved efficiently.

The REACHABILITY problem for a § when each f;
is a linear function over a finite unitary semi-ring can
be stated as follows: Given an initial configuration J
and a final configuration C, is there an integer 7 such
that £(8,J,7) = €7 The t-REACHABILITY problem
can also be expressed in the same manner with the
additional constraint that = < ¢.

Open Question: What is complexity of REACHA-
BILITY problems for SDS in which each f; is a linear
function over a finite unitary semi-ring?

The successive squaring technique does not seem
applicable to these problems since the technique does
not compute all the intermediate configurations. The
REACHABILITY and t-REACHABILITY problems for
(USRING, LINEAR)-SDSs appear to be closely related
to the discrete logarithm problem [64].

5.4 Factorization of SDS

The idea behind the factorization of a given SDS is to
relate it to SDS considered over simpler graphs. Ac-
cordingly, the term “relation” has to be made precise
which results in defining what a morphism between

SDS is:

Definition 5.1 Let [Fz,0] and [Fy,n] be two SDS.
An SDS-morphism between [Fz,c] and [Fy,n] is a
pair (¢, ®) where ¢ : Y — Z is a graph morphism and
where ® : I'[Fz,0] — T'[Fy,n] is digraph morphism.

Given a graph morphism ¢ : Y — Z we want to relate
the dynamics of SDS over the two graphs Y and Z.
The local functions will be the same for the two graphs
unless otherwise stated. To begin, we relate update
schedules for Y and Z via ¢. Assume |v[Y]| = n
and |v[Z]| = m and let ¢~1(i) = {i1,...,4;,} where

6The discrete logarithm problem is given positive integers z,
y and n to find an e such that z¢ = y(modn). As noted in [64],
the discrete logarithm problem appears to be computationally
very difficult.



i1 < ...q, for 1 <i<m. Let # = (m1,72,---,Tm),
we define the map 7y : Sy, = S, by
Ne(m) = (M1, s Mgy se s Tmis -5 Tmi,, ) (D)

For instance, in the example with ¢ : Q3 — Ky, we
have 15(4,3,2,1) = (3,4,2,5,1,6,0,7).
Similarly, we define the map 7 : F5* — I3 by

(T(@)k = To(r)- (6)
The dynamics of SDS over Y and Z can now be
related in the following way [89]:

Theorem 5.8 [89] Let Y and Z be loop-free con-
nected graphs, let ¢ :' Y — Z be a locally bijective
graph morphism, and let (f;); be a fixed sequence of
Boolean quasi-symmetric functions. Then the map T
induces a natural embedding

T: F[Fz,ﬂ'] — F[Fy,n¢(7r)]. (7)
Thus, when we have a covering map ¢ : Y — Z we can

obtain parts of the phase space of SDS over Y from
simpler SDS over Z by the map 7. Example 5. Let
c=1(0,7,1,6,2,5,3,4). To illustrate Theorem 5.8 we
show how to relate the phase space of the following
two SDS [Ming,,id4] and [Mingg,o]. We already
discussed the covering ¢ : Q3 — K, and observe
Ny(id4) = 0. In [12] we have shown that [Ming,,id4]
has exactly two 5-cycles and no fixed points. The two
5-cycles are shown in the top row of figure 8. For
convenience we use the map

i
&i(wy, ... 1) = Ziﬁj 22071

J=0

&]Fé —)N,

to encode states (binary tuples), and we have, e.g.
(1,1,0,1) —» 14+ 2+ 8 = 11. It is straightforward
to see that the phase space of [Ming,,id4] is indeed
embedded in the phase space of [Mings, o].

We remark that [Mingg,ns(ids)] has two fixed
points in addition to the two 5-cycles shown in the last
row in Figure 8. These fixed points are related by the
graph automorphism v = (07)(16)(25)(34), and con-
sequently, so are their transients. Stated differently,
the two components in I'[Mings, n4(ids)] containing
the fixed points are isomorphic. Their structure is
shown in figure 9.

It will usually be more feasible to analyze the SDS
over the smaller graph. A particularly interesting in-
stance of this situation is the following;:
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Figure 8: The top row shows the two five-cycles
in [Ming,,id]. The second row shows the im-
ages of the top cycles under 74, and the last row
shows the corresponding periodic cycles in the di-
graph T'[Min s, 74 (id4)]-

Proposition 5.1 Assume 2" = 0mod n + 1, and let
7 € Spy1. Then the SDS [Pargy,ng(w)] has a peri-
odic orbit of length n + 2.

This situation is very advantageous since SDS over the
complete graph are usually a lot simpler to analyze
than SDS over any other graphs.

6 Engineering:
Based Approach

A Theory

A primary and hard requirement in building these
simulations was the size and scope of the simula-
tions. Specifically, each simulation has over 10°® enti-
ties and covers large geographical areas on the order of
a medium sized metropolis. For instance, the network
simulator is aimed at simulating up to 10° transceivers
and 10'2 packets per hour. Each simulation is devel-



Figure 9: The structure of the components in
I'[Ming;,n4(ids)] containing a fixed point. A sin-
gle filled circle depicts a single state, while a circled
number ¢ depicts that there are i direct predecessors
that do not have any predecessors themselves.

oped and demonstrated (or is being demonstrated)
on real large infrastructures rather than merely syn-
thetic data. This involves interesting issues of data
collection and validation. The size, scope and the in-
tended purpose of the simulations impose a strong set
of engineering requirements:

1. high performance parallel/distributed simulation

design

parametric/normative yet approximate represen-
tations of individual agents

Algorithmic Semantics: Correctness of paramet-
ric representations as producing the required dy-
namics

4. lightweight agent abstraction and representation

Due to lack of space, the last requirement will be dis-
cussed in a companion paper.

Ezxample 6: Updating Driver States. In
this example, we investigate the relation between
the structure of the dependency graph of a sys-
tem and its influence on the corresponding dynam-
ical system properties. We choose an example from
TRANSIMS, wherein one updates the vehicle po-
sitions based on the vehicles in the neighborhood.
For more references on traffic studies we refer to
[7, 10, 14, 75, 76, 77]. The setup is the following.
There is a circular one-lane road divided into n cells
as in figure 10.

One vehicle occupies one cell and has a given ve-
locity. A vehicle can travel at one of three velocities:
0, 1 and 2. There are m vehicles and their initial
positions are chosen at random. They are labeled 1
through m by the order in which they initially appear
on the road. There is a schedule 7 that determines
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Figure 10: A circular one-lane road divided into cells.
A dot indicates that the given cell is occupied by a
vehicle. The dependency graph Y (¢ = 0) associated
to configuration to the left is shown to the right.

the update ordering. A vehicle at cell 4 with speed v
is updated as shown in Table 1.

. 1+ 1 free, i1,
(Cell,Speed) || ¢+ 1 taken | ¢ 4+ 2 i+ 2 free
taken
G,0) G0) 1) G,2)
(i, 1) (,0) | G+L1) | (i+1,2)
(%,2) (3,0) (G+1,1) | (1+2,2)

Table 1: The update rule for a single vehicle

Thus a vehicle at cell ¢ with speed 1 that has two
free cells ahead moves one cell ahead and gets the new
speed of 2.

At each time step ¢ we can derive the associated
dependency graph Y (t). The graph Y(¢) has vertices
1,2,...,m corresponding to the vehicles. Two ve-
hicles k and [ are connected by an edge if the dis-
tance between them at time ¢ is less than or equal
t0 Umax = 2. If the distance is larger they are inde-
pendent by construction. (A vehicle only depends on
what is ahead on the road.) Thus for the configu-
ration in Figure 10 we derive the dependency graph
shown in Figure 10.

There are two ways to display the occupancy pat-
tern of the cells. One way would be to give phase
space diagrams. Here it is more convenient to display
orbits, frequently referred to as space time diagrams.
Each horizontal line shows the occupancy pattern for
a given time. A black square means that the partic-
ular cell is occupied at the given time, while a white
square means that it is unoccupied at the given time.
The initial configuration is displayed on the bottom,
its subsequent state next, and so on.

Clearly, the space time development will depend
on the order that is used to update the car. This
is illustrated in Figure 11 where the same ini-
tial occupancy pattern is studied under natural up-
date order (1,2,...,m) and even-odd update order



..,1,3,...) respectively.

Figure 11: The left diagram shows the evolution for
the natural update order and the left diagram shows
the evolution for the even-odd update order.

The traffic pattern evolution as a function of the
density p = m/n exhibits a threshold value for con-
gestion. In Figure 12 we show evolution patterns for
densities below, at and above the threshold together
with a snapshot of one of the corresponding depen-
dency graphs Y(to). In this example there are 16
cells. The threshold occurs between 4 and 5 vehicles.

The existence of a density threshold for the traf-
fic evolution is natural. When the road is occupied
with a small number of vehicles they will eventually
spread out and travel independently of each other at
maximum speed. The dependency graph approaches
the empty graph Yy independently of initial distribu-
tion. As more vehicles are put into the system one
cannot avoid overlapping dependency regions. This
can for instance be observed using the average speed.
For low densities the average speed approaches 2. For
higher densities it fluctuates in the range (0,2). Thus
there is an interesting interplay between the depen-
dency graph evolution and the corresponding dynam-
ical system properties.

6.1 Disaggregated Normative Agents:

PARALEL Algorithms

A key component of our research paradigm that
specifically addresses scaling issues is the notion of
PARameterized Approximate Local and Efficient al.-
gorithms (PARALEL) discussed below. As dis-
cussed above, in simulating large systems with tens of
thousands (or more) of interacting elements, i.e., in-
teractors, it is computationally infeasible to explicitly
represent each entity in virtual detail using, perhaps,
naive one agent-one encapsulated software object rep-
resentational ideas. A common method of simulating
such systems is to use parameterized representations
of entities. The goal is to capture different behav-
iors of the system using different sets of parameters.
The concept corresponds to having a normative rep-
resentation of each abstract agent. A parameterized
representation allows efficient use of computational
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Figure 12: The diagram in the upper left shows the
evolution below the density threshold while the upper
right diagram and the lower diagram show the evo-
lution at and above the threshold respectively. The
graphs under the diagrams show snapshots of the as-
sociated dependency structure.

resources. Indeed, even in systems with only tens of
thousands of entities, the set of potential interactions
among the entities is so large that parameterized rep-
resentations are desirable, if not absolutely necessary
to simulate the interactions in an efficient manner.
The basic ideas behind agent abstraction are found in
our concept of PARALEL algorithms:

o PARameterized, in that a single basic algorithm
with a correct set of input parameters is capable
of representing a class of algorithms,

Approximate, in that their behavior closely ap-
proximates an exact algorithm achieving a given
task,

Local, in that the information required by such
algorithms is local as opposed to global, and

Efficient, in that are very fast and can be ex-
ecuted efficiently on both sequential and dis-



tributed shared memory multiprocessor architec-
tures a-L-gorithms.

The concept of local algorithms is akin to the re-
cently independently introduced concept of decentral-
ized algorithms [57] and also to the classical concept
of distributed algorithms. The approximate behav-
ior is also pertinent at two levels. At the basic level
an approximate algorithm closely models the behav-
ior of each physical entity. At a global level, an ap-
proximate solution implies that the composed local
algorithms representing each agent along with the up-
date mechanism approximates the global system dy-
namics. The second notion of approximation is more
important, although the first notion cannot be com-
pletely ignored. We discuss three examples of such
classes of algorithms in two contexts: (i) Represen-
tation of a network protocol stack (ii) modeling the
driving logic of a driver [7, 75, 77] and (iii) Finding
minimum cost paths in a multi-modal transportation
network [18, 14]. In addition similar generic methods
for load balancing and actuated signal timings have
been used in our parameterized representation of ac-
tuated signals in TRANSIMS [14].

Example 7: Parametric Driver in TRAN-
SIMS. As another example of a parametric algo-
rithm (or normative agent), we describe the simple
logic used for representing a driver in TRANSIMS
[7, 75,77, 76]. Asin Example 1, we will only consider
one lane road”. Here, a road is divided into cells of
7.5 meters and the variable gap is used to measure
the number of empty cells between a car and the car
ahead of it. In the following, let v denote the speed
of the vehicles in number of cells per unit time, vpax
denote the maximum speed and rand as a random
number between 0 and 1. Finally, p,.ise denotes the
probability with which a vehicle is slowed by 1 unit.
Each iteration consists of the following 3 sequential
rules that are applied in parallel to all the cars:

1.

Acceleration of free vehicles: If v < Ve, Then

v=v+1.

Braking due to cars in front: If v > gap, Then

v = gap.

. Stochastic Jitter: If (v > 0) AND (rand <
pnoise)a Then v=v—1.

In spite of their simplicity, these rules produce fairly
realistic traffic flow characteristics and can in limit
approach the fluid dynamics models studied in traffic
flow theory [7, 75, 77, 76]. Figure 13 shows illus-
tration of traffic flow characteristics produced by the

7The models has been extended to multi-lane systems also

above set of rules for a one-lane road with periodic
boundary conditions.
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Figure 13: Figures representing various traffic flow
characteristics.

Ezxzample 8: Parametric Protocol Stack.
Here we describe our abstraction for modeling each
transceiver. See [49, 50] Each transceiver of an ad-hoc
packet switched network can be idealized as a com-
puter along with the necessary hardware for network
communication. We will use communication network
terminology and abstractions as our starting point.
Our abstraction will thus span the transport layer,
network layer, data link layer and the channel access
layer. One approximate representation for the entire
protocol stack would then look like:
P=exp |83 ) alh)v ®)
2
Here P denotes the probability of retransmission of
a packet, A; and A, are the distance proxies to the
destination and from the previous transceiver respec-
tively, f(t) is an arbitrary function of time since the
packet was launched from the source, and g(h) is a
function of the number of hops the packet has taken
from the source. v is a function of the available re-
sources; it will be 1 if resources for transmission re-
main, and infinite otherwise. Before considering the
calibration of 8, we must fix the functional forms of
f(t) and g(h). As shown in [16], simple variations in
the order of evaluations or changes in the can be used
to mimic various protocols at different levels.

6.2 Algorithmic Semantics: Correct-

ness of PARALEL

Given a specification of an individual agent, a funda-
mental question is to decide if this specification (al-
gorithm) serves as an “approximation” of the origi-
nal agent. Ideally, what one would like is to seek a
“proof” that the simulation as a whole serves as an
approximation for the simulated system. A detailed
discussion of this issue is beyond the scope of this pa-
per and is very much an open research question. We
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offer a few possible approaches to tackle the problem.
These approaches include:

e Notion of Simulation, Bisimulation, Trace equiv-
alence and other equivalence relations used in dis-
tributed computing [52, 44, 46, 71, 82, 84, 94].

Notion of exact and approximate distributed al-
gorithms and the associated proof techniques
that a given distributed algorithm simulates a
known sequential algorithm [65, 85].

Uses of hierarchical abstractions and associated
methods such as hiding to show that one system
can approximately simulate the other at a certain
level of granularity [2, 3, 52, 71, 82, 94, 97].

Using game theoretic constructs and arguments
to show that the dynamic process being studied is
an Equilibrium of a certain game [55, 79, 81, 93]°.

7 Brief Overview of Projects

In this section, we will briefly describe our ongoing
simulation effort for number of socio-technical sys-
tems. The systems described include:

e TRANSIMS: a transportation analysis tool
that also provides detailed mobility patterns

e adhopNET: a simulation based analysis tool for
simulation hybrid packet switched telecommuni-
cation networks,

e EpiSIMS: a simulation for studying the propa-
gation and transmission of disease and

e Market-Simulation: a simulation to study
deregulated power markets and commodity mar-
kets in general.

See [100, 6, 31] for other efforts on building simula-
tions for these infrastructures. These socio-technical
systems represent the basic national infrastructures.
The design and implementation of the simulations
draws on the SDS based theory of simulations; ex-
amples of this have already been given in the previ-
ous section. The systems are at various stages of de-
velopment — TRANSIMS being most advanced (is
in fact being commercialized) and Market Simulation
being only a couple of years old. As expected mobility
patterns and activities produced as a part of TRAN-
SIMS form the basis of all the other simulations. Fig-
ure 14 shows the current software inter-dependence.

8As an example, Kelly [55] shows a result in this direction
by showing a game whose Nash equilibrium is the TCP/IP
congestion control.
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As would be expected, these simulations can be used
to perform a range of analysis. For example TRAN-
SIMS can be used to design land use models, study
the cost benefit analysis of building transportation
infrastructure such as freeways, mass transit systems,
etc. It can also be used to study emissions and their
environmental impact. All these studies can be car-
ried out at a regional scale.

adhopNET
[TRANSIMS ]‘—[ SDS ]

. Market
EpiSIMS Simulation

Figure 14: Various Infrastructure Simulations and
their inter-dependence.

Building these infrastructures also allows us to
study infrastructure inter-dependencies. Such studies
can be carried out from the stand point of vulnerabili-
ties, economic impact and cost benefit analysis across
infrastructures. For example, one would like to study
the impact of power loss to a particular community
such as say the Wall Street to the commodity trading.
Another example is to see how disruption in commu-
nication will strain the transportation infrastructure.
The number of possible uses are indeed numerous;
the aim was just to illustrate the range of possibilities
when one couples the individual simulations.

7.1 TRANSIMS

Transportation Analysis and Simulation System
(TRANSIMS) developed at the Los Alamos Na-
tional Laboratory produces estimates of the social
network in a large urban area based on the as-
sumption that the transportation infrastructure con-
strains people’s choices about what activities to per-
form and where to perform them. The purpose of
TRANSIMS is to develop new models and meth-
ods for studying transportation planning questions.
See Figure 15. A prototypical question considered
in this context would be to study the economic
and social impact of building a new freeway in a
large metropolitan area. We refer the reader to [8]
and the web-site http://transims.tsasa.lanl.gov



to obtain extensive details about the TRANSIMS
project. TRANSIMS conceptually decomposes the
transportation planning task into three time scales.
First, a large time-scale associated with land use
and demographic distribution as a characterization of
travelers. In this phase, demographic information is
used to create activities for travelers. Activity infor-
mation typically consists of requests that travelers be
at a certain location at a specified time. They include
information on travel modes available to the traveler.
A synthetic population is endowed with demographics
matching the joint distributions given in census data.
Observations are made on the daily activity patterns
of several thousand households (survey data). These
patterns are used as templates and associated with
synthetic households with similar demographics. The
locations at which activities are carried out are es-
timated taking into account observed land use pat-
terns, travel times, and dollar costs of transporta-
tion. Second, an intermediate time-scale consists of
planning routes and trip-chains to satisfy the activ-
ity requests. This module find minimum cost paths
through the transportation infrastructure consistent
with constraints on mode choice. An example con-
straint might be: “walk to a transit stop, take transit
to work using no more than 2 transfers and no more
than 1 bus”. Finally, a very short time-scale is associ-
ated with the actual execution of trip plans in the net-
work. This is done by a simulation that moves cellu-
lar automata corresponding to the travelers through a
very detailed representation of the urban transporta-
tion network. The simulation resolves traffic down to
7.5 meters and times down to 1 second. It provides
an updated estimate of link costs, including the effects
of congestion, to the Router and location estimation
algorithms, which produce new plans. This feedback
process continues iteratively until convergence to a
steady state in which no one can find a better path in
the context of everyone else’s decisions. The resulting
traffic patterns are matched to observed traffic.

The TRANSIMS system can be viewed as com-
position of SDS. Each SDS corresponds to one of the
modules as described above. The traffic simulation
is an obvious one, but the population disaggregation
and activity generation module and the multi-modal
router can also be seen as SDS. The system consists of
about 200,000 lines of mostly C++ code and runs on
a variety of UNIX platforms. A case study in Port-
land, Oregon is currently underway. The Portland
population located on this network is about 650 000
households with approximately 1.8 million travelers
who participate in 8.9 million activities during the
course of a 24 hour period. The current case study is
being performed on a Linux cluster using 48 CPUs for
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Figure 15: Data flow in the TRANSIMS simula-
tion system, proceeding from left to right. Input data
comes from the U.S. census and metropolitan plan-
ning organizations. We generate a synthetic popula-
tion whose demographics match the census; give each
household an appropriate set of activities; plan routes
through the network; and estimate the resulting travel
times. The dotted lines represent feedback pathways,
along which data flows from right to left, in the sys-
tem.

the traffic simulator and 64 for the router. The router
takes roughly 20 hours to generate trips for the entire
population; the traffic micro-simulator runs about 3
times faster than real-time, on average. At the current
time, no information is available regarding scalability.
The current number of processors was chosen to keep
each process’s memory requirement comfortably be-
low 1 Gigabyte.

7.2 adhopNET

adhopNNET is a simulation based analysis tool for
an end-to-end simulation of packet switched commu-
nication systems. By end-to-end simulation system,
we mean that the entire aspects of a mobile communi-
cation system is represented and studied. This ranges
from detailed mobility calculations to packet level dy-
namic generation to computation of the performance
measures characterizing the system performance. Ini-
tially development of the simulator has focused on ad-
hoc networks (networks with no fixed infrastructure);
but it will be clear that a successful implementation
of this would directly yield solutions for hybrid packet
switched networks. The prototype version has been
tested on systems with millions of transceivers with
billions of packets moving in the system. We view the
underlying system as a large discrete dynamical sys-
tem and use SDS to specify these systems mathemat-
ically. This view point allows a certain level of rigor
in engineering these simulations. In the remainder of
the section, we briefly outline the SDS specification
of packet switched ad-hoc radio networks.

The function of Mobility Data Generation Module



Mobility Transmission ‘ Transceiver Oriented
Data Session Activity SF:;‘SI:l‘or Packet Storage and
Generator Generator Regeneration

Figure 16: Overall design of adhopNET.

(MDG) is to generate the positions of transceivers at
various times of the coarse simulation clock. This
module also allows transceivers to become idle for
some period of time and to rejoin the network
at a later time. The module also provides for
new transceivers to join the network and existing
transceivers to leave the network permanently. The
module allows us to use synthetic mobility models
such as the ECRM model as well as TRANSIMS
based realistic mobility patterns. Transmission Ses-
sion Activity Generation Module generates sessions
for a fraction of the transceivers that are active at
a given coarse clock time. For each session, the mod-
ule specifies the source, the destination, and the num-
ber of packets in the session, the size of each packet
and the rate at which the source generates the pack-
ets. The third module is the Packet Simulator. This
module simulates the packet flow in the system using
the activity data and the graph structure generated
by the mobility generation module and transmission
session activity module. The module is responsible
for producing the packet movements and the resulting
dynamics. This is done using the SORSRER  algo-
rithm, a parameterized abstraction discussed in the
previous Section. The Transceiver-Level Packet Data
Collection and regeneration module is concerned with
efficient methods for collecting summary information
about packets and packet sequences as they arrive at
a destination. Information is collected per activity
at the destination node. The data collected relates
to index and time distortion of a packet sequence.
We focus on information about the network dynam-
ics that is embedded in the distortion of the original
sequential order of packets in a session during the re-
broadcast routing process that is observed at the des-
tination site. We then use Monte-Carlo Regenerative
methods to efficiently regenerate synthetic packet se-
quences. These synthetic sequences are statistically
indistinguishable from the packet sequences collected
during the session generation phase, much more effi-
ciently produced, but pertain only to the particular
system configuration simulated. But it replaces enor-
mous data storage requirements for detailed system
analysis with much more modest storage and a cer-
tain amount of additional computation. The mapping
of the generation-oriented simulation (SDS) into the
re-generation method (an isomorphic SDS) is theoret-
ically under-written by equivalence properties of SDS.
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The telecommunication problem consists of mod-
eling and analyzing a general setup of mobile
transceivers. The transceivers are located and move
in some appropriate two- or three-dimensional physi-
cal space. Stationary or fixed networks can be viewed
as a special case.

We describe an SDS based specification of a generic
ad-hoc communication network. It will be clear that
the ideas can be extended to hybrid networks also.
See [25] for additional details. Our modeling and
mathematical framework for IP network must include
quantities describing, e.g. i) mobility and position of
stations or transceivers, ii) the packet structure used
in broadcasting, iii) metrics or distance proxies for
routing, and iv) measures for transmission quality.

The transceivers or stations pass messages from
message origins to message destinations. A
transceiver or station could be, e.g. a base station,
a communication satellite, etc. Stations send and re-
ceive packets, and also act as intermediate communi-
cation links for other stations.

Transceivers have a certain broadcast power which
is reflected in its broadcast radius r, or more gener-
ally, the extent of its domain of influence, dom (7). We
will use Y; for referring to the dependency structure
induced by the broadcast radii, or more generally, do-
mains of influence of the transceivers. The graph re-
flects which transceivers can communicate. Since, e.g.
the transceivers are moving the dependency graph will
change with time.

There are four layers for the process of packet and
sequence transmission. There is the physical layer and
the MAC layer which are the basic layers. Packet
routing and end-to-end connection management are
the other two layers. Each layer can be cast or repre-
sented as an SDS, and each of these SDS are defined
over the same set of vertices. We will demonstrate
how this can be done for the Physical layer and the
MAC layer. We will denote the SDS obtained for
the physical layer by Fi(v,m). Similarly, we denote
the SDS obtained for the MAC layer, packet routing
and end-to-end connection management by Fs (v, m2),
G(v,7m3) and H(v,wy), respectively. Here v denotes
the vertex set. It is included to emphasize that the
vertex set is the same for all four SDS. The full up-
date of the system will in general be of the form:

H(v,74) 0o G(v,m3) 0 Fo(v,m3) o Fy(v,m1)

Physical layer. The domain of influence, or the
broadcast range of a transceiver, is determined by its
power level. The relation “who-can-reach-who” can
be encoded in the dependency graph Y;. We note



that the graph Y; is induced by the motion of the
transceivers or stations.

The edges around each vertex or transceiver can
be ordered or labeled 1 through m — 1. We take the
complete graph on m vertices as base graph, and we
assign to each transceiver a state = € Fy*~!.

The local update function for vertex i is defined by
fi : [an—l]m - an_la
{1, pos(7(ek))) € domy(3)

() =
(i@ 0, otherwise,
where 7(el) denotes the transceiver adjoined to ver-
tex ¢ through edge ej,.
Clearly, the choice of update schedule does not mat-
ter.

The SDS over K,, induced by the local functions
above is Fi(v,m) : [F '™ — [F#~']™, and the
state z in
2= (@1, @35> Ta1)s -+ (21525 T 1))

= F1(v,m)((0,0,...,0),...,(0,0,...,0)),

is an encoding of the dependency graph ;. If zi =1
then the kth edge from vertex i in K, will be an edge
in Y}, and conversely if & = 0.

Alternatively, but equivalently, we can formulate
this in terms of the dependency graph itself and the
transceiver displacements. That is, from the current
dependency graph Y; and the displacement AX; =
(AX¢1,...,AXy ) we obtain Yiqq:

Vi, AX)) S Yo

This may be advantageous in the situation where the
transceiver motion is de-coupled from the dynamics
of packet broadcast and also when mobility or dis-
placement is generated according to some stochastic
process.

MAC layer. The dependency graph provides infor-
mation on what kind of transceiver-transceiver com-
munication that in theory could occur. However, for
packet broadcast to actually take place one needs to
have allocated transmission frequencies or channels.

Clearly, two transceivers that are adjacent cannot
operate on the same frequency since that may re-
sult in corrupted packet transmission. Similarly, two
transceivers that are not adjacent but have a com-
mon neighbor transceiver cannot send on the same
frequency either.

The frequency or channel assignment problem thus
corresponds to the distance-2 vertex coloring problem

of the graph Y; [59]. Let dy denote the usual path
length metric of a graph Y.

We claim that coloring by any local algorithm can
be implemented as an SDS. As an example we take
coloring by the greedy algorithm. In this particular
case we go through the vertices in some order and
assign to each vertex the smallest (by some order-
ing) color that is available for the neighborhood of
that vertex. To be explicit, let be a graph on m
vertices and let my € S,,. Take as the set of colors
C=10,c1,...,¢,} with ordering 0 < ¢; --- < ¢, and
define

fr:CF = C,
fe(z1,...,zp) = mingec{c|e>x forl =1,...,k}.

We denote the SDS over Y induced by the local
functions above by F(v,m3) : C™ — C™. The color-
ing assigned by the greedy algorithm is

(1, 2m) = Fa(v,m).

A distance-2 coloring of a graph Y can be obtained
as a coloring of the graph Y2 defined by

v[Y?] = v[Y]
e[Y?] = {{i,j} | dv (i,5) < 2}.

In the actual implementation edges in Y; may have
to be deleted in case there is a shortage of available
frequencies. This can be incorporated into F (v, m)
with no change in structure. It does, however, impose
update ordering dependencies.

Clearly, for the generation of the covering graph it
is advantageous for the transceivers to have a high
power level for broadcasting. By this, longer packet
jumps can be obtained. For the frequency allocation
the opposite is true: Few neighbors, which equates
to a smaller broadcast power level makes frequency
allocation simpler. The power level must be attuned
in accord with mobility and packet traffic.

7.3 EpiSIMS

As another example, we describe the design and im-
plementation of a system for simulating the spread
of disease among individuals in a large urban popu-
lation over the course of several weeks. See [32] and
http:www.lanl.gov/orgs/d/d2 for a more detailed
account of the project. In contrast to traditional ap-
proaches, we do not assume uniform mixing among
large sub-populations or split the population into spa-
tial or demographic subpopulations determined a pri-
ori. Instead, we rely on empirical estimates of the so-
cial network, or contact patterns, that are produced
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by TRANSIMS. The design we have chosen is a
distributed discrete event simulation. Data flow in
the simulation is sketched in the block diagram of
Figure 17 and described in more detail below. Each
individual is represented by an object that contains
a subset of the available demographic information as
well as his or her state of health. Each computational
node is responsible for all the interactions at a sub-
set of (geographical) locations. Individuals are passed
among computational nodes via messages as they go
about their daily activities.

disease ———>————— initial healtr\

partition

1 1

| snapshot |

1 1

————————— — I I

population “>' summary |
y

si\ej:xle?%/ . :

1

1

1

1

Figure 17: Data flow in the epidemiology simulation
system. Input data comes from two sources: the
user’s disease model and information about the so-
cial network. Stand-alone tools operate on the dis-
ease model and the population’s demographics to pro-
duce the initial state of health for everyone in the
simulation. Another tool converts a list of activities
and locations organized by person into a schedule of
events (primarily arrivals and departures) organized
by location. The final preparation step estimates an
optimal partition of resources among computational
nodes. The simulation itself executes events in strict
time order and propagates disease in accordance with
the user’s disease model. It produces three kinds of
output: snapshots at specified intervals for anima-
tion, statistical summaries of the simulation, and sets
of disease-related events. In the near future, we will
add the feedback pathway shown by the dotted line,
allowing a person’s state of health to affect his or her
activities.

7.4 Deregulated Commodity Market
Simulation

As a final example we briefly describe our ongoing
effort to build a highly scalable, individual based,
microscopic coupled simulation tool for analyzing a
deregulated electricity market [24]. The aim is to
build a system that can in principle simulate the en-
tire North American power market and very specific
design decisions have been taken into account to meet
these long term requirements. The basic design is

quite geneic and can be used for simulating other com-
modity markets as well. A particularly compelling
situation is the bandwidth trading market for trading
capacity on the Internet.

The overall design of our simulation based analysis
tool is depicted schematically in Figure 18. The sys-
tem is individual based and uses a bottom up method
for generating power consumption usage patterns to
drive the market and the physical grid. It consists of
three main components that form a coupled system:

1. the electrical power grid, with associated ele-
ments including, generators, substations, trans-
mission grid and their related electrical charac-
teristics.

2. amarket consisting of usual market entities: buy-
ers, sellers, the power exchange (where electricity
trades are carried out at various time/size scales),
ISO; the market clearing rules and strategies.

3. a TRANSIMS based individual power demand
creator that yields spatio-temporal distribution
of the power consumed.

The simulation can be used as an analysis tool by
the government, policy makers, regulators, genera-
tors and politicians, with which they could predict
and foresee changes in the policies that they propose
and any actions they potentially take. It will have
the ability to produce results that follow from differ-
ent regulatory changes, see the impact of changes in
consumer behavior on the clearing price, impact of
price caps on demand and supply, market efficiency,
generators’ bidding strategies etc. Also, how differ-
ent market clearing rules result in different clearing
prices, which clearing rules favor which class of gen-
erator, consumers and bring most efficiency to the
system? Who benefits from the asymmetric informa-
tion between consumers and generators, can market
efficiency be improved by providing more instanta-
neous and complete information to the players or will
it be misused to exploit market power? These are a
few of the important questions that can be answered
using this simulation.

The simulation uses a parametric representation for
a buyer as well as a seller. Other unconventional de-
sign features include: (i) Drops of classical Cournot
oligopolist’s assumptions, (ii) Assumes bounded ra-
tionality, (iii) Individualistic and detailed modeling of
the consumption function, (iv) Mobility driven con-
sumption depends on activity, location, time and de-
mographics, (v) Allows asymmetric information be-
tween consumers and generators, (vi) Generators aim
to maximize not only profits but also market share.
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Figure 18: Activity and Location Based Power Con-
sumption

8 Conclusions and Future Work

We have discussed mathematical foundations and en-
gineering principles necessary for building large scale
simulations of socio-technical systems. On the the-
oretical side, sequential dynamical systems are pro-
posed as a mathematical model of large discrete simu-
lations. Engineering principles are derived from such
a theory. These engineering principles allow us to
design simulations for extremely large systems and
implement them on massively parallel architectures.
Our ideas are illustrated by means of several on go-
ing socio-technical simulations being developed at Los
Alamos National Laboratory. We conclude this paper
by mentioning recent extensions to the SDS frame-
work.

Time Evolving SDS: First, we want to extend
the SDS framework where the underlying dependency
graph, functions and order of update changes over
time. The current simulation approach incorporates
what we already know about evolving dependency
structures and handles them explicitly. The need
for time evolving SDS becomes clear when we note
that the dependency structure of the underlying agent
changes due to the inherent mobility present in the
system under consideration. See [53, 67, 68] for re-
cent work in this direction.

Coupled SDS: Second, we are extending the SDS
framework to apply to so called coupled/composed se-
quential dynamical systems. The description of SDS
based network specification in the previous section
and in [25] are already a step in this direction. We
have also a graph grammar based formalism that al-
lows us to specify and investigate the properties of
such systems [53, 67, 68].

Stochastic SDS. The third extension is to incorpo-
rate stochasticity in the SDS formalism. A moment of
thought will reveal that this feature can be added to
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various attributes comprising SDS (the dependency
graph, local transition function, states and ordering).
We have begun preliminary investigations concerning
these extensions in [54, 86, 88].

Algebraic Invariants of SDS. For the categoriza-
tion of SDS (and their phase spaces in particular) a
generic framework, like a homology theory for topo-
logical spaces, would be of great benefit. First steps
towards such a framework have been made in [61, 89)
where the fixed points of an SDS have been character-
ized as certain cohomology groups. This approach im-
mediately allows for an efficient computation of fixed
points of SDS on a local basis [62].
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